Table 4 * ITU-T G.652.D attributes

Fibre attributes		
Attribute	Detail	Value
Mode field diameter	Wavelength	1310 nm
	Range of nominal values	$8.6-9.5 \mu \mathrm{~m}$
	Tolerance	$\pm 0.6 \mu \mathrm{~m}$
Cladding diameter	Nominal	$125.0 \mu \mathrm{~m}$
	Tolerance	$\pm 1 \mu \mathrm{~m}$
Core concentricity error	Maximum	$0.6 \mu \mathrm{~m}$
Cladding noncircularity	Maximum	1.0\%
Cable cut-off wavelength	Maximum	1260 nm
Macrobend loss	Radius	30 mm
	Number of turns	100
	Maximum at 1625 nm	0.1 dB
Proof stress	Minimum	0.69 GPa
Chromatic dispersion coefficient	$\lambda_{\text {omin }}$	1300 nm
	$\lambda_{0 \text { max }}$	1324 nm
	$S_{\text {Omax }}$	$0.092 \mathrm{ps} / \mathrm{nm}^{2} \times \mathrm{km}$
Cable attributes		
Attribute	Detail	Value
Attenuation coefficient (Note 1)	Maximum from 1310 nm to 1625 nm (Note 2)	$0.4 \mathrm{~dB} / \mathrm{km}$
	Maximum at 1383 nm $\pm 3 \mathrm{~nm}$ (Note 3)	$0.4 \mathrm{~dB} / \mathrm{km}$
	Maximum at 1550 nm	$0.3 \mathrm{~dB} / \mathrm{km}$
PMD coefficient (Note 4)	M	20 cables
	Q	0.01\%
	Maximum $\mathrm{PMD}_{\mathrm{Q}}$	$0.20 \mathrm{ps} / \sqrt{\mathrm{km}}$

NOTE 1 - The attenuation coefficient values listed in this table should not be applied to short cables such as jumper cables, indoor cables and drop cables. For example, [IEC 60794-2-11] specifies the attenuation coefficient of indoor cable as $1.0 \mathrm{~dB} / \mathrm{km}$ or less at both 1310 and 1550 nm .
NOTE 2 - This wavelength region can be extended to 1260 nm by adding $0.07 \mathrm{~dB} / \mathrm{km}$ induced Rayleigh scattering loss to the attenuation value at 1310 nm . In this case, the cable cut-off wavelength should not exceed 1250 nm .
NOTE 3 - The average attenuation coefficient at this wavelength shall be less than or equal to the maximum value specified for the range of 1310 nm to 1625 nm , after hydrogen ageing. The hydrogen ageing is a type test that shall be done to a sampled fibre, according to [IEC 60793-2-50] regarding the B1.3 fibre category.
NOTE 4 - According to clause 6.2, a maximum $\mathrm{PMD}_{\mathrm{Q}}$ value on uncabled fibre is specified in order to support the primary requirement on cable $P_{M D}$.

